
Semiclassical stochastic representation of the Feynman integral

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 6457

(http://iopscience.iop.org/0305-4470/27/19/018)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A. Math. Gen. 27 (1994) 6457-6477. printed in the UK 

Semiclassical stochastic representation of the Feynman 
integral 

Z Haba 
Institute of Theoretical Physics, University of Wrochw, Wrodaw. Poland 

Received 21 April 1994, in final form 1 July 1994 

Abstract We show that for a wide class of analytic potentials the solution of the Schriidinpr 
equation can be expressed by the Wiener integral. We express the Feynman kernel by the 
Brownian bridge. We prove an asymptotic semiclassical expansion of the solution of the 
Schn5dinger equation as well as of the Feynman kernel. We show that for a small time the 
van Vleck formula holds Vue as the limit h + 0 of the Feynman kernel. 

1. Introduction 

There have been numerous approaches to the mathematical theory of the Feynman path 
integral [ 11. An approach suggested by Gelfand and Yaglom 121 to use the propagation kernel 
in order to consmct a complex measure appeared to be wrong [3]. Another approach based 
on a Fourier transform suggested first by It0 [4] and developed by Albeverio and Hoegh- 
Krohn [5] defines a complex measure (Fresnel integral), which, however, is not supported by 
paths in the configuration space. A relation of such a measure to summation over polygonal 
paths is discussed in Elworthy and Truman [6]. There have been numerous works concerned 
with an analytic continuation of the Wiener integral to the Feynman integral; let us mention 
Cameron [3], It0 [7], Nelson [SI (see also [9]). 

The difficulty with a naive definition of the Feynman integral originates from the non- 
existence of the Lebesgue measure in an infinite number of dimensions. There are many 
reasons for using the Wiener measure in an infinite number of dimensions to fulfil the role 
of the Lebesgue measure. An interpretation of the Feynman integral as a generalized Wiener 
functional (i.e. a distribution) in an infinite number of dimensions has been discussed in [lo]. 
The class of functionals which are integrable in various approaches is quite reshicted. If 
we confine ourselves to analytic wavefunctions and severely reshict the class of potentials 
which are admitted, then the Feynman integral can be expressed by the Wiener integral 
according to Cameron [3]. This expression has a rigourous mathematical meaning for a 
class of potentials discussed by Doss [ I l l  and Azencott and Doss [12], who developed 
some ideas of Cameron [3]. 

In this paper we further develop the approach of Cameron-Doss-Azencott. We extend 
the class of potentials which can be treated this way to Doss potentials I1 11 plus a Fourier 
transform of a bounded measure. We first regularize the potential and then remove the 
regularization. In this case the Feynman formula should be understood in a distributional 
sense, because the Feynman integral is a limit of Wiener integrals with regularized potentials. 
We show some analyticity properties of the resulting wavefunctions. Next, we remove the 
requirement on the wavefunction to be analytic (sections 3 and 4). We derive a formula 
for the Feynman kernel in terms of the Brownian bridge. The Feynman kernel can be used 
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to extend the probabilistic representation of the solution of the Schrodinger equation to 
non-analytic wavefunctions. In sections 5 and 6 we apply the probabilistic representation 
of the Feynman integral to the semiclassical expansion. We show that standard (but formal) 
functional integral methods can be given a ngourous meaning in such a way that the whole 
intuitive appeal of the Feynman integral is preserved. We show that the semiclassical 
expansion is asymptotic for sufficiently small time. 

2. Solution of the Schrodinger equation 

A representation of the solution of the Schrijdinger equation in terms of Brownian motion 
has already been discussed by Cameron [3]. This approach to the Feynman integral has 
been further developed by Doss [ I l l  and Azencott and Doss [12]. We shall show in this 
section that the representation in terms of the Wiener measure can be applied to the class 
of potentials considered by Ito [4] and Albeverio and Hoegh-Krohn [5]. 

Let Fn denote the Banach algebra of functions of the form 

where U is a complex measure on R" writh a bounded variation [ V I  (this is the class of 
functions discussed in [4-51). We have to restrict this class further to analytic functions 
(such a restriction has also been introduced in [13]). We need yet another restriction, which 
comes out in one step of the proof of theorem 2.2 below. So we consider the set 7inF c F, 
defined by 

Both F,, and XnF are dense subsets in &(Kin).  

Schradinger equation 
We are interested in a path integral representation of the solution @: = U,@ of the 

(2.3) 

where @, V E 'HnF. We shall also consider a complex extension of equation (2.3) i n  the 
form 

) 
h1 imm)  = (- z;;; A + m z )  t l r , ~  = ( H @ A ( ~ )  = @ 

(2.4) 

where A E C and 

(clearly equation (2.3) corresponds to A = 6 = (1 + i)/fi). 
We express the path integral by the Wiener process b, (Brownian motion). b, f R" 

is the Gaussian process with the covariance (when there is a danger of confusing vector 
indices with time we shall also use the notation b(t) instead of b,) 

E[b'((r)b'(s)] = St, min (t, s) k. r = 1,2 , .  . . , n. (2.5) 
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We use the notation 

E [ F ]  E dpw'(b) F ( b )  ! 
where pw' is the Wiener measure and the integral is over the Wiener space C([O, t ] )  which 
consists of continuous functions defined on the interval [O, t ]  with b(0) = 0. 

We need first the following. 

Lemma 2.1. Let p be a Gaussian measure on the Wiener space C([O, t ] ) .  Assume that Q 
is a non-negative quadratic form on C([O, t ] )  such that Q = limp+m Qp with probability 1, 
where Qp is a continuous non-negative quadratic form. Let L(b) = a&(rk), where 
at E W (k = 1,2 , .  . ., r )  and 0 < rt < I  are arbitrary. Then 

I/dp(b)exp(-Q(b) - iAL(b))l < 1 (2.6) 

if Re@') 2 0. 

ProoJ For Qp we have explicitly (see [14], theorem 4, section 18) 

/dp(b) exp(-Q(b) - W b ) )  

where 

C - G'/2(1 +G'/2QpG'/Z)-'G'/' 
P -  

and G is the covariance of p. It follows that the bound (2.6) holds true for Qp. Then, 
exp(-Q, -iAL) is bounded by an integrable function exp 11LI. Hence, equation (2.6) holds 

0 
With a general potential of the form (2.1) we need a cutoff on an intermediate stage 

true by Lebesgue dominated convergence. 

Let us denote 

@R(br)V(I  4- lUb,)dt . (2.7) I f 

nt(g@R(b); v ( Z  + lob)) = eXp 

We shall also use a shorthand notation n(g8.q) for the LHS of equation (2.7). 

Theorem 2.2. Assume that @, v E xmF. Then, E[fi&@R)] is an analytic function of 
g E C and 1 # 0 as long as Reh2 2 0. Define 

hR(e) = E[Qf(g@R)@R(b)@(z  + Aubf)l. (2.8) 

Then, @f(z) limR-rm exists uniformly in t and z. $rf(2) solves the Schrodinger 
equation (2.3). The solution is an analytic function of g and A (in the same region where 
E[Qf] is analytic). 
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Proof: 
fact, the exponent in equation (2.7) is bounded because 

I@R(b , ) v (Z  + bb)l = I/ d ~ v ( 7 )  exp ( - - 2) exp( iW + hub,)) 

The functional under the expectation value in equation (2.8) is bounded in b. In 

I 
< /dlwl(7)exp (2.9) 

owing to the assumption (2.2). 
Hence, Q as well as e*, is bounded. We expand Q in a power series in g. Then, 

applying the Lebesgue dominated convergence theorem we exchange the sum with the 
expectation value. We obtain 

R -  lim FN(R) *' - N + m  

where 

(2.10) 

with 

Then, owing to the assumption (2.2) we can apply the Fubini theorem 

1 E [ / d v d v )  ... dvv(m)dw(P) exp(-BnR) 

We are now able to show the existence of the limit 

lim Fw(R) = FN . (2.11) 
R-rW 

This follows from the Lebesgue dominated convergence theorem, because the measure IuI 
is finite and 

IE[~xP(-B.~)II  < 1 (2.12) 
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by virtue of lemma 2.1. Note that from the bound (2.12) it follows that 

where IuI is the total variation of I,. 

Therefore we may exchange the limits N -+ bo and R + 60 
Hence, the convergence N -+ 03 of F N ( R )  is uniform in R (as well as in x and t ) .  

n 1 = C(A-2)nh-" g" E [ (1 V ( r  + Aub,)dr 
m 

n !  

It is clear from equation (2.13) that if l u ~ l  and Iu$l are bounded, A # 0 and ReA2 2 0, 
then the series (2.13) is convergent uniformly in f and x. It can also be checked by direct 

0 calculation that @t (2.13) satisfies the Schrodinger equation. 

We can obtain an immediate extension of the formula (2.8) to potentials of the form 

VQ,(x) = f m m ( f ) 2 s 2  + c(t)x + gV,(x) = e,(=) + gV,(z) (2.14) 

where V E 'FinF and w and c are continuous functions of time. 

Lemma 2.3. Assume that w(Q2 < U; for each t ,  then 

(2.15) 

iff -= H/OO. 
Proof. The quadratic part in the exponential is equal to $(f)*b: < $ w i g .  We can 
bound the expectation value in equation (2.15) by the expectation value of an exponential 
of a linear function in b (which is know to be finite) and the expectation value of the 
exponential of the quadratic part bounded by 

(2.16) 
E [ e ~ p ( ~ & i ~ ~ b i d i l ] = S n - n e x p  db, 

"4 Jz;T 
where an expansion of the Brownian motion i n  an orthonormal basis of &(O, t )  has been 
applied (see [16]). The statement of the lemma follows from finiteness of the integral (2.16). 

0 
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Theorem 2.4. 

Proof: 

If t c a/wo then theorem 2.2 holds true for VQ (equation (2.14)). 

We define a new measure by the formula 

EQ[F] = E[expQ F]. (2.17) 

Equation (2.17) determines a finite measure as long as f < z/wo. Then lemma 2.1, as 
well as the arguments used in the proof of theorem 22, remain true with the replacement 
E[ .] + En[ .], because in the proof we have used only the fact that the measure is 

0 

As a further extension of the formula (2.8) we consider the Schrodinger equation in an 

Gaussian and not its explicit form. 

electromagnetic field 

where 

(2.18) 

(2.19) 

@R(br)A(x + Aub,) o db, 

Here eRA is a bounded function. The circle denotes the Stratonovich stochastic integral 
(see [17]). It is related to the It0 integral (without the circle) used later on (and in equation 
(2.20) below) by 

A o d b , =  Adb,+T divAdr. J s '/ 
We need first the estimate of Carlen and Kree [15] (proposition 3). 

Lemma 2.5. Let fr(x) be a bounded function of r and x. Then 

is an analytic function of p.  

Theorem 2.6. Assume A, V, $ E 'Hn3. Define 

+iR(x) = E[atA(&'R)$'l(z + Aub1)1. (2.21) 

Then limR-,w$tR(x) = $l(x) exists uniformly in f and x. $, is the unique solution of 
the Schrodinger equation (2.18) with the initial condition +. @, is an analytic function 
of g E C, e E C and A # 0 as long as Re)? > 0. $:(x) has an analytic continuation 
$,(z + iy) to @". 
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Proof. From equation (2.19) a tA(g&)  = SRAS2,(g&). where the first factor is bounded 
by an integrable function as a result of lemma 2.5. and the second factor is bounded owing 
to the estimate (2.9). We expand QtA(g&) in a power series in g and e. As in the proof of 
theorem 2.2, applying the Lebesgue dominated convergence theorem, we exchange the sum 
with the expectation value. We obtain an analogue of the series F N ( R )  in equation (2.10). 
Then, using the estimates of Carlen and Kree [15] on E[(Jfdb)'] (implicitly contained in 
equation (2.20)) we can show that the convergence N + 03 of F N ( R )  is uniform in R.  
Hence we can exchange the limits N -+ CO and R + 00 (as we did in equation (2.13)) 

U proving that $,(%) is a sum of an absolutely convergent series in e and g. 

3. Stochastic representation of the Feynman propagator 

In section 2 we have restricted ourselves to wavefunctions which are boundary values of 
holomorphic functions 'HnF. This is a dense set in L2(Wn) .  So a definition of U, on this set 
determines U, in a unique way. However, we cannot extend Ut to L2(Rn) directly through 
the formula (2.8). We begin with a definition of a semigroup S, and its kernel on L2(Rh). 
Then, through a restriction of the kernel to analytic functions we are able to define the 
Feynman propagator U,(%, y) for Doss potentials [11] as well as the potentials of the form 
of a Fourier transform of a bounded measure. 

Let us consider a decomposition of Rh into R"@W", z = (XI, sa), where XI. xz E R". 
We define a subset Gz of R2" 

a& c R2" = (U E Wz"Iw = (%I + y, x2 + y), y E R") (3.1) 

Let V be a complex-valued potential defined on Rz" such that on Gz 

l I m W ~ ~ + y . x z + ~ ) l  < A ( x ~ . x d ( l ~ l + l )  (3.2) 

with a certain continuous non-negative function A.  We define a semigroup SI on the set of 
functions defined on Rzn such that on Gz 

(@(%I + Y . x ~ + Y ) ~  < M ( I ~ , ~ ~ ) ~ ~ P ( C ( X ~ , % ~ ) I Y O  (3.3) 

with certain non-negative continuous functions C and M. S, is defined by the Feynman-Kac 
formula 

U 
(S,@)(z) = E [exp (- 
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where 

The last two lines of equation (3.4) define the kernel of the operator S,. It can be seen 
from equation (3.4) that under the expectation value the argument of the functions V and 
Q runs over the subset 6, C Ra. Under the assumptions (32)-(3.3) the integrand (3.4) is 
bounded on 6, by 

Hence the expectation value is finite. 
We can express the kernel S l ( q ,  2 2 :  yl,  y2) of S, by the Brownian bridge a. The 

Brownian bridge (see [16]) is the Gaussian process defined on the interval [0,1] with the 
covariance 

E [ ( Y ~ ~ ( s ) ~ ~ ( s ' ) ]  = 6k,s(l -sf )  if s < s' (3.5) 

and the boundary conditions a(0) = a(1) = 0. The &functions in equation (3.4) depend 
only on the final time f .  Then the expectation value in the second line of equation (3.4) is 
equal to the expectation value 

times the expectation value of exp(-(i/ii) S V ) ,  where the Brownian motion is constrained 
to end at y. A solution of this constraint gives a simple formula for the kernel (a similar 
formula has been derived in [ 1-51) 

We wish to relate the kernel (3.6) to the Feynman kernel of the unitary evolution (2.3). 
This can be achieved if we restrict oursevles to functions of the form 

V ( w .  Z Z )  = V(ZI + ird @(=I, 1 2 )  = $ 6 ~ 1  + iz2) (3.7) 

where V and $ are holomorphic functions of their arguments. Inserting equation (3.7) into 
equation (3.4) we obtain 

(3.8) 
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where by E we have denoted E [ .  . . I  (the last factor in equation (3.6)) with yt = 
?(y + 21 - 12) and YZ = $(Y - =I + d. I 

We show next that 

(3.9) 

(where in" = exp(iinrr)) for any analytic function x E Lt(R") of the form 

x (U) = 1 dp x "(PI exp ipy.  (3.10) 

In order to check equation (3.9) we insert equation (3.10) into equation (3.9), apply the 
Fubini theorem, and perform the y-integral. 

Finally, we set x2 = 0 in equation (3.8) and apply the identity (3.9). We obtain an 
expression for (S&)(x) in terms of the kernel 

(3.11) E Kta(xc, yPr(Z, Y) 

1 
where 

i=&= - ( l + i )  
45 

and we have denoted the free propagator by KO. 
Equation (3.11) is our final formula for the Feynman propagator. That this is the 

Feynman propagator follows from its derivation (with the representation of the time 
evolution in section 2 and [ll]). We can also check directly through differentiation that 
K, (equation (3.11)) satisfies the Schrodinger equation (the initial condition Ko(r,y) = 
S(x - y)  is obviously satisfied). 

The expectation value (3.11) is finite under the assumptions (3.1)-(32), which for the 
holomorphic function (3.7) ($2 = 0) read 

I v(r + Y + iv)l < A ( W v l +  1). (3.12) 
The assumption (3.12) coincides with that of Doss-Azencott [ l l ,  121. So the formula (3.11) 
applies at least to Doss potentials V [ 111. We shall extend the method to potentials from 
XnF in the next section. 

Remark I. The kernel Kr(x, y) (3.1 1) is well defined also for some meromorphic potentials 
V if we exclude a set of points (x. y) of measure zero (we shall discuss such potentials in 
section 6). 

Remark 2. It can be seen from equation (3.11) that Kr(Ax,hy) is well defined (i.e. the 
expectation value is finite) for a monomial V, bounded from below, of order N = 4 p  or 
N = 8 p  + 6, where p = 0, I ,  . . . (it is easy to see that K,(z, U) itself is well defined for 
any polynomial, bounded from below, of order N = 8 p  + 6). So we could extend the 
validity of the formula (3.11) to some even polynomials V through an analytic continuation 
in space. 
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4. Definition of the Feynman kernel for potentials from 'Flz 

Equation (3.1 1) as it stands is not directly applicable to potentials from 'HH,+, because it is 
not clear whether the expression under the expectation value is integrable for such potentials 
(they do not satisfy the condition (3.2)). We proceed in the same way as we did for the 
wavefunction (2.8). We first regularize the potential V + V R  in the kernel R in equation 
(3.1 1). We obtain in this way the regularized kernels RrR. We prove: 

Theorem 4.1. Define 

where V E XnF. The limit R + 03 exists uniformly in f ,  x, y. ?7, is an analytic function 
of g and A # 0 if ReA2 > 0. Ko,R, defines the Feynman propagator (3.11) for V E X n F .  

Proof. We expand the exponential in equation (4.1) in a power series in g. As in the proof 
of theorem 2.2, using the Lebesgue dominated convergence theorem we exchange the sum 
with the expectation value. We obtain 

where 

with 

and 
S S 

P(S) = I ( 1  - ;) + y ; . 
Then, owing to the assumption (2.2) we can apply the Fubini theorem 

(4.3) 
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This follows from the Lebesgue dominated convergence theorem, because the measure IuI 
is finite and 

I E [ ~ x P ( - & ~ ) I I  < 1 (4.4) 

by virtue of lemma 2.1. From the bound (4.4) it follows that 

where IuI is the total variation of U. Hence the convergence N -+ CO of R N ( R )  is uniform 
in R (as well as in il: and f). Therefore we may exchange the limits N -+ CO and R + CO 

Finally, we can prove that Ko,R ,  is the Feynman propagator, differentiating equation (4.5) 
term by term. In fact, after a computation of the expectation values in equation (4.5) we can 
convince ourselves that the expansion (4.5) coincides with the standard Dyson expansion 
of the Feynman propagator. 0 

5. Semiclassical approximation to the solution of the Schrodinger equation 

The semiclassical expansion of the solution of the Schrdinger equation is discussed by 
Maslov [I81 for arbitrarily large time. A simple rigourous version of this expansion for 
a small time has been proved by Truman [19]. If the initial wavefunction is analytic and 
an analytic potential is of the Doss class, then the semiclassical expansion for small time 
has been established by Azencott and Doss [12].  The expansion is based on the following 
lemma proved in [U].  

Lemma 5.1. Assume that F ( 6  + <f)  is an analytic function of <. Then for any integrable 
F (depending on b(s) with 0 < s < f) and for any 5 E C 

i f f ’  is square integrable. 
If < E R then equation (5.1) is the standard Cameron-Martin formula [17]. Then, 

because the r.h.s. is analytic in C E C! and independent of < if < E E% it follows that it does 
not depend on 5 E @. 
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Applying equation (5.1) to $,' (2.8) we obtain the following identity 

Q(gOr(b+{f); V ( X + l U b + l U { f ) ) e ~ ( b + S f ) r l . ( m + h o b f + T h U f )  

We can prove an analogue of theorem 2.2, 

Theorem 5.1. Let + f R  be defined by equation (5.2). then the limit qr of $rrR when R --t CO 

exists for arbitrary f ,  x and square integrable f'. I)~ is the solution of the Schradinger 
equation (2.4). It can be expressed by the absolutely convergent series 

x 4(x t nub, + SAof,)  . (5.3) I 
Proof. We repeat the arguments of the proof of theorem 2.2 applied to equation (5.2). 0 

We now choose < = A-]. Let us denote 

&(z) = x + uf(s). (5.4) 

Assume that 9, being a Fourier transform of a bounded measure, has at the same time the 
semiclassical form 

@ = 1 exp (im-y) dvy = exp (F) 4 ( 5 5 )  

where 

$(z) = 1 exp( iw)dWt) ,  

We choose f in such a way that 
sufficiently small time there exists the unique solution of this problem 1211) 

is the solution of the boundary value problem (for a 

dZE 
ds2 

m - = - VV(5) 
(5.6) 
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Next let us denote the classical action corresponding to the trajectory (5.6) by S 

S,(<) is the solution of the classical Hamilton-Jacobi equation 

+ v = o  (VSY a,s+ - 2m (5.7) 

with the initial condition Sll,+ = W .  

formal limit R + 00. In this limit @f(z) depends on 
The virtue of the boundary condition (5.6) is that the terms linear in b cancel in the 

V,(< + hob) E V(< + l o b )  - V(<) - VV(E)hUb 

and 

Wz(E + hob) W(< +hob) - W(E) - VW(<)hob (5.8) 

which are of order R. Hence, 

(5.9) 

We are going to give equation (5.9) a rigourous meaning for V E XnF (for Doss potentials 
the semiclassical formula has been proved in [12]). 

First, we must restrict the growth of Im W on the subset 16, c RZ" (see the definitions 
(3.1) and (3.7)). Assume 

- Im W~(Z + y + iy) < K ( I ) I ~ I '  (5.10) 

with a certain non-negative continuous function K. We need the bound (5.10) in order to 
prove integrability. 

Lemma 5.2. Let M be an n x n matrix, then 

E[exp(%b,Mbl)l c 00 

if [MI c l / t  

Proof. The statement follows from the formula for the expectation value 

Theorem 5.3. 

1 dy (2rrt)-n'Z exp (- 
2r 

Assume the bound (5.10), then for each I and t sufficiently small 

0 

(5.11) 
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Q can be expressed explicitly by a convergent series 

b(s)V"(&)b(s)ds - (5.12) 

where V" and W" denote the second-order Frechet derivatives, 

Proof. We use the decomposition (5.8) in equation (5.3) (with hZ = i). We rewrite the 
absolutely convergent series (5.3) in such a way that the regularity in h is visible. So, we 
subtract W(&)+VW(&)Aabi from W(&+hubI) (equation (5.8)) and V(&)+VV(&)hobr 
from V ( &  + lob,) where from the classical equations of motion VV can be expressed by 
f" (equations (5.6)). Expanding in the coupling constant g we rewrite the series (5.3) in 
the form 

= lim lim FN,K = lim F N , N .  
N-tmK-m N - m  

(5.13) 

In equation (5.13) the potentials V and V2 depend on paths, which are functions of time r. 
The multiple integral denotes an integral over all these r. Then 

In the expansion (5.13) VWhob  cancelled as a result of the integration by parts in $ f'db 
in equation (5.3) and the boundary conditions (5.6). Owing to our assumption (5.10) and 
lemma 5.2, each term in the series (5.13) is finite for sufficiently small t .  The subsequent 
transformations in the formuIa (5.13) are allowed, because the series limx,, FNJ (fixed 
N )  is absolutely convergent. So, owing to the Lebesgue dominated convergence we were 
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able to exchange the limit K + 00 and the expectation value. Again, by the absolute 
convergence we were allowed to take the limit of the double sequence F N , ~  over the 
diagonal. When N = K in equation (5.13) the terms in the sum independent of b then 
cancel identically, whereas the terms linear in b cancel each other owing to the equations of 
motion (5.6). Next, we prove that i f f  is small enough. then the convergence for N + 00 

of the series (5.14) is uniform in h. First, note that the series (5.14) is absolutely convergent 
for t small enough. In fact, using the Taylor formula with a remainder 

VZ(< + bub) = I ’  ds 2 V ( c  + Ausb) 

we can express the nth order term in equation (5.14) in the form ’ 

(5.15) 

We can compute the expectation value in equation (5.15) explicitly (the integral is Gaussian). 
After the computation of the expectation value we obtain a Gaussian function of sk. An 
estimate of the number of terms resulting from a differentiation over s can be made 
analytically using a representation 

(5.16) 
a - exp(- f isMs) = det(2rriM)-’” 

ask 
true (with a proper interpretation of the square root of the determinant in equation (5.16)) for 
any invertible reg matrix M. Now, it can be seen from equation (5.16) that the expectation 
value (5.15) is bounded by n ! ,  because the 2n differentiations in equation (5.16) give a factor 
n !  times a bounded function (from the well known properties of the Gaussian integral). We 
could also obtain this bound directly without the use of the representation (5.16) if we 
were to note that the nth term in the series (5.15) is equal to a Wiener integral of the 
form - E[b”] times a phase factor. We conclude that the number of terms generated by 
the differentiation over s is bounded by e!. Hence, because the expectation value (5.15) 
(before the differentiation over s) is a phase factor (owing to lemma 2.1) we obtain that 
the expression (5.15) is bounded by K”t” for a certain K .  Therefore the series (5.14) is 
absolutely convergent uniformly in h for sufficiently small time. Taking the limit h -P 0 

0 

Remark 1. When we apply the Schwarz inequality to the RHS of equation (5.12) and use 
lemma 2.3 and lemma 5.2, we then obtain a necessary condition on t (which we believe is 
close to optimal) 

(5.17) 
(the supremum is taken on the trajectory C(r) with 0 g 5 < t). 
Remark 2 .  We could consider meromorphic initial conditions W. In such a case the bound 
(5.10) can be satisfied except for a discrete set of points 2. When the bound (5.10) holds, 
then the expectation values (5.3) and (5.12) are finite. $&) (5.3) is the solution of the 
Schrodinger equation except for a neighbourhood of a discrete set of points, and equation 
(5.12) determines its semiclassical limit. 

a s ask 
d u  exp($iuM-Iu) - exp(ius) 

term by term we arrive at the formula (5.12). 

t -= 4n(sup1~”(<)1 ) -~  + f ( sup~~’ ‘ (< )~) - I  
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6. Semiclassical expansion of the Feynman propagator 

Let us consider first a simple case of a meromorphic potential V of the form 

V(x) = Q(z)P(r)-' (6.1) 

where Q and P are polynomials and their degrees satisfy the inequality deg(Q) 4 
deg(P) + 2. Then V ( z )  is quadratically bounded for z E e", except for a discrete set 
of points corresponding to zeros of P. The potential in equation (3.11) can be singular at 
a discrete set of values of a(s ) .  With such singularities the expectation value in equation 
(3.1 1) still can be finite. However, in order to avoid eventual difficulties we restrict ourselves 
here to x and y from a set 

Boz" {(x,y)lP (e(1 - 5 )  + y  ; +Aaa ( 5 ) )  # 0) c R" x B". 

It is easy to see h a t  the condition that (z, y) 6 Roz" reads 

S 

t 
z (1 - 5 )  + y - = Rezo - I m a  (6.2) 

for a certain 0 C s < t where a is a (complex) zero of P, ie (x, y) @' &@' if Rezo -1m .ro 
lies on the line joining x and y. 

In order to derive a semiclassical expansion we make a shift of variables in equation 
(3.1 1) similarly as in equation (5.2) 

Q +  @ + C f .  (6.3) 

After the shift (6.3) we obtain (on setting the coupling constant g of (2.3) equal to 1) 

Equation (6.4) holds true for an arbitrary f defined on the interval [O, 11 whose derivative 
is square integrable and f ( 1 )  = f(0) = 0 (f must satisfy the same boundary conditions as 
the Brownian bridge does). 

The potential V, as well as the expectation value (6.4). are analytic in {. In such a 
case, from the fact that Rfc(z,y) in equation (6.4) does not depend on { for real, we 
can conclude that it does not depend on { if C is allowed to be complex. We choose now 
{ = A -  ' in equation (6.4). Let us denote 

S 
q(s;x ,  y) = x (1 - ') t + u y  +gJI'f (7) (6.5) 

q E B" is a curve joining I to y. We choose it as a solution of the Newton equation 

d". = - VV(q)  
dr2 
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with the boundary condition q(0) = z and q( t )  = y (under our assumptions on V 
there exists a unique solution of equation (6.6). at least for small time). We assume that 
q(s )  # R e a  - I m a  for any s. This condition is not so easy to verify and looks rather 
awkward from the point of view of classical dynamics. It could be justified by a requirement 
that the classical (real) dynamics has  an extension to complex dynamics. 

Let us introduce the classical action 

Then the formula for R (6.4) takes the form 

%(z,y) =exp (y) E [exp I-; lr VZ (q(s)+ huda  (:))ds)] exp ( (x - Y) ') 
2ituZ 

where 

V z ( q + h ~ f i a ) =  V ( q + h ~ & a ) -  V ( q ) - h f i a V V ( q ) .  (6.9) 

Theorem 6.1. Let V be the rational function (6.1). Assume that q(s) # Re xo - Imz0 for 
any s and any zero zo of P. Then for sufficiently small t 

?I-0 lim K,(q y)(2nitu2y1zexp ( - ;S,(q))  = E [exp {&l'ci (f) V"(q(s))a (:)ds]] 

(6.10) 

where V" denotes the second-order Frechet derivative. 
Moreover, the expansion of E" in U is asymptotic. 

Proof. In order to prove that the expansion of RK (equation (6.8)) in U is asymptotic it is 
sufficient to show that Rn and all its derivatives over U are bounded uniformly in 0 < U < E 
for a certain E .  First, if V is a rational function (6.1) then VZ (6.9) is also a rational function 
of the same type (quadratically bounded) with the same discrete set of singulmities. Now 
for Gaussian integrals we have [16] 

(6.11) 

if tZ < r2(sup, lm(r)iz)-' for any polynomially bounded function P (this is a sufficient 
condition for a finiteness of the integral (6.1 l) ,  not a necessary one). From equation (6.1 1) 
it follows that 'R" is integrable uniformaly in U ,  because VZ is quadratically bounded. 
Applying the Lebesgue dominated convergence, we obtain the explicit formula (6.10) for 
the limit U + 0. It follows also from equation (6.11) that the integral (6.10) is finite if 

(4.12) 1 tz  sup v"(q(s)) c mr . 
S 
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It remains to show that the derivatives are also uniformly bounded. We have 

(6.13) 

For the rational potential (6.1) d/du u-’Vz in equation (6.13) is bounded uniformly in U 

and is polynomially bounded in CY. Im VZ in the exponential in equation (6.13) is bounded 
uniformly in U by a quadradtic form in Q of the type (6.11). Hence, from the formula 
(6.1 1) it follows that the RHS of equation (6.13) is bounded uniformly in U if time is small 
enough. It is clear from the argument applied to the first derivative that we can continue 
differentiation in U and that the derivatives will be bounded uniformly in U .  Hence the 

0 
We would like to prove the semiclassical formula also for potentials of the form of a 

semiclassical expansion is asymptotic for sufficiently small time. 

Fourier transform of a bounded measure. We obtain (here restoring the coupling g): 

Theorem 6.2. Assume V E XnF,  then for sufficiently small f 

(6.14) 

Proof: After the shift (6.3). equation (4.1) takes the form 

(6.15) 

x exp [A L O R  (a(:) + A-’f (?)) f V(q(f)  + A u J Q ( ~ ) )  I ds}] . 

We can prove, as in theorem 4.1, that the limit R + CO of RR exists for arbitary f (with 
a square integrable derivative). It can be expressed by the absolutely convergent series 

As in the proof of theorem 5.3, we write 

(6.16) 

V ( q  + JAu~) = V ( q )  + VVAU&Q + Vz.  
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With this decomposition. i f f  is small enough 

exp ( h )  - -s  R, z e x p  ( ) I ) N - m  --s lim x N  

= lim lim FN,K = lim FN,N (6.17) 
N-rwK-m N-bW 

where the meaning of the multiple integral is the same as in equation (5.13) and 

(6.18) 

The formula (6.17) holds true because the series IimK,, F N , K  (fixed N) is absolutely 
convergent. So, owing to the Lebesgue dominated convergence we were able to exchange 
the limit K -+ cc and the expectation value. Again, by the absolute convergence we were 
allowed to take the limit of the double sequence FN,K over the diagonal, then the terms 
linear in CY cancel each other owing to the equations of motion (6.6). Next we show that 
the series (6.18) is absolutely convergent uniformly in h for t small enough. In fact, using 
the Taylor formula with a remainder 

V2(q + A u J a )  = du - V(q + Auuv'ia) I' d z  

we can write the nth order term in equation (6.18) in the form 

(6.19) 

We can compute the expectation value in equation (6.19) explicitly. After the computation 
of the expectation value we differentiate over U. The estimate of the number of terms can be 
obtained in the same way as in the proof of theorem 5.3. We can conclude that the number 
of terms generated by differentiation is bounded by n!. Hence, because the expectation 
value (6.19) (before the differentiation over U) is a phase factor, we obtain that equation 
(6.19) is bounded by K"t" for a certain K. So the series is absolutely convergent uniformly 

0 in h.  Taking the limit h + 0 term by term we arrive at the formula (6.14). 



6476 Z Haba 

If d e g P  + I > degQ then the formula (6.8) is well defined for arbitrarily large t. 
However, the remaining non-classical terms could give a large contribution for small U .  In 
order to get some feeling for what can happen, let us apply the Jensen inequality in the 
form 

(6.20) 

true for any real function A. Applying the Jensen inequality (6.20) and the Fubini theonm 
we can obtain the estimate 

(6.21) 

In order to compute the expectation value (6.21) we have used the representation of the 
Brownian bridge in terms of the Brownian motion 

(see [16]). 
If Im Vz(q + z) - z for large z1 then through the saddle point method we obtain, in 

general, for the RHS of equation (6.21) the behaviour exp(Kfi), where the constant K can be 
positive. If this is the true behaviour of the functional integral (6.8) then we have a profound 
departure from the semiclassical approximation. With the formula (6.8). which also holds 
true for non-integrable systems and time-dependent potentials, we have a method of studying 
the behaviour for small h and large f. An investigation of this regime is important for an 
understanding of the relation between classical and quantum mechanics. A detailed estimate 
of the behaviour of R1 for the whole range o f t  and h would be useful for applications of 
semiclassical methods. Apparently, the estimate exp(K/h) is too pessimistic (a blow-up of 
the semiclassical approximation; there are some indications that the semiclassical behaviour 
of chaotic systems can continue for a large time [20]). First of all, in deriving the bound 
(6.21) we have taken the absolute value under the integral sign, neglecting the oscillatory 
terms in equation (6.8) which are crucial for the sign of K (at least, this is so for finite- 
dimensional integrals). The Jensen inequality applied in equation (6.21) may also be too 
rough. In addition, the condition (6.12) (resulting from the requirement (6.11)) is also too 
strong. It is not satisfied for large f on the RHS of equation (6.10). The RHs of equation 
(6.10) is equal to the van Vleck determinant. As is well known from the study of the 
van Vleck determinant, it becomes infinite at a certain time to (owing to a focal point), but 
for t > to it varies continuously until the next focal point. 

The formula (6.8) gives a sound starting point for an investigation of the large f and small 
A behaviour. Let us mention here a simple application to a potential V ( x )  of meromorphic 
type (6.1) decreasing to zero when 1x1 + W. In such a case the saddle-point method 
applied to the integral on the RHS of equation (6.21) can give an estimate uniform in A and t 
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confirming the leading term of the semiclassical expansion (but not necessarily the van Vleck 
formula (6.10)). For rigourous estimates of this case as well as the more interesting cases 
with classical turning points, we need a detailed study of the saddle point method for the 
functional integral. 

If the time is arbitrarily large, then the saddle points (5.6) and (6.6) may be absent, or 
there may be many saddle points [21], In such a case the semiclassical estimates become 
much more involved. 
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